

About Argonne: What is it?

Founded in 1943, designated a national laboratory in 1946

Managed by The University of Chicago for the Department of Energy

~ 4000 employees, 4000 facility users

- ~ \$500M budget
- 1500-acre site in Illinois
- 800-acre site in Idaho
- "Multi-purpose" Lab: Broad R&D portfolio
- Numerous sponsors: DOE, NIH, ...

About Argonne: What is being done there?

- Basic and applied research
 - Materials and chemical sciences and engineering
 - High energy, nuclear, and atomic physics
 - Multidisciplinary nanoscience and nanotechnology
 - Structural biology, functional genomics, and bioinformatics
 - Environmental science, technology, and assessment
 - Transportation technology
 - Computer science and applied mathematics
 - Computational science

- Advanced Photon Source (APS)
- Intense Pulsed Neutron Source (IPNS)
- Argonne Tandem-Linac Accelerator System (ATLAS)
- □ Design, development, and evaluation of advanced nuclear energy systems and proliferation-resistant nuclear fuel-cycle technologies

About Argonne: where are the collaborators/users?

Example #1: what does it take to do structural bio?

- "do it" = do it superbly
- Ingredients
 - Infrastructure
 - □ Facilities: synchrotron, beam line(s), instrumentation, computing
 - Staff
 - Scientists
 - Leaders (faculty, senior research staff, ...)
 - Next generation (students, postdocs, ...)
 - Support
 - Funding
 - "Venue"

How does Argonne do this?

Plays the organizing role for 3 inter-related activities

Structural Biology Center (SBC) Midwest Center for Structural Genomics (MCSG) General Medicine and Cancer Institutes Collaborative Access Team (GM/CA CAT, in progress)

- User facility, peer-reviewed access
- Led by A. Joachimiak (ANL)
- Develops instrumentation, software/methods, high throughput technologies
- Supported by DOE/BER and NIH (1 of 9 national sites)
- "Home" for MCSG

- Consortium of ANL and 6 universities (*)
- Led by A. Joachimiak (ANL) and 6 university-based co-Pl's
- Focus is on developing and optimizing methods for protein structure determination, from expression to modeling
- Supported by NIH/NIGMS

- Builds and operates a national user facility for crystallographic structure determination of biomolecules
- Led by Prof. Janet Smith (Purdue Univ.)
- Supported by NIH Nat. Inst. of Gen. Med. Sciences (NIGMS), National Cancer Institute (NCI) and DOE
- (*) Northwestern Univ., Washington Univ. School of Medicine, University College London, UT Southwestern Medical Center (Dallas), Univ. of Toronto, and Univ. of Virginia
- ANL leads some activities, universities lead others; in all, ANL plays the role of "glue", "venue", and "core of stability"

The results ...

- Success
 - Structural Biology ANL user community, ANL scientists, and ANL collaborators are the leading depositors of protein structures in the NIH data base
- The Lab wins
 - Success breeds success:
 - NIH National Institute of General Medical Sciences (NIGMS), National Cancer Institute (NCI) and DOE have funded a new General Medicine and Cancer Institutes Collaborative Access Team (GM/CA CAT)
 - Would not have happened if successful Lab/university collaboration had not already been demonstrated
- The university community wins
 - Research opportunities have grown explosively
 - University investments have been appropriate to them
 - New faculty hires, growth in student and postdoctoral populations

Example #2: how does one lead in software?

- "do it" = do it superbly
- Ingredients
 - Infrastructure
 - Facilities: computing, visualization, networking, ...
 - Staff: world-class programmers with long-term stability
 - Environment:
 - Recruiting/defending 1st-rate staff against commercial "raids"/pressures
 - Building critical-mass, stable software teams
 - Scientists: the "idea engines"
 - Leaders (faculty, senior research staff, ...)
 - Next generation (students, postdocs, ...)
 - Support
 - Funding
 - "Venue"

How does Argonne do this: grid computing

- Strategic decision made to define the de facto standard for grid computing
 - Collaboration between
 - The Distributed Systems Lab (DSL), led by lan Foster at and UofC
 - USC's Information Sciences Institute/Center for Grid Technologies, led by Carl Kesselman

- The necessary critical mass of staff (programmers, systems, ...)
- The physical infrastructure (the "venue")
- Stability
- The universities provided
 - The faculty leaders
 - The students and postdocs

The results ...

- Globus Toolkit 2.0 has become the de facto standard for grid computing
 - MIT Technology Review named the Grid one of "Ten Technologies That Will Change the World."
- The project is reaping praise
 - □ Globus Toolkit 2.0 won the 2002 R&D100 prize
 - □ Foster and Kesselman won the British Computer Society (BCS) Lovelace Medal for 2002 (presented by Prof. Sir David King, UK's Chief Scientific Advisor)
 - ANL's Foster and Tuecke, and USC's Kesselman won the 2003 InfoWorld Top Innovators award
 - ANL's Foster and Tuecke, and USC's Kesselman won the Federal Laboratory Consortium (FLC) 2003 FLC award for Excellence in Technology Transfer

BCS[®]

×

What can we conclude?

- What did the universities gain?
 - Access to world-class, constantly updated, facilities and capabilities
 - Resolution of the classic "support staff" problem
 - Investments were appropriate to academia
- What did the Lab gain?
 - Users and collaborators who
 - Did first-rate science
 - Were invested in the facilities, and helped to improve them
 - Access to potential first-rate Lab recruits
 - Crucial help in retaining first-rate scientific leadership
- What did both gain?
 - First-rate science
 - The recognition that goes with doing first-rate science

What were the crucial do's and don'ts?

- What were ANL's "carrots"? What worked?
 - Don't dominate all activities; let others lead
 - Perception must be of collaboration, not exploitation
 - Leadership must be visibly first-rate
- What were the pitfalls for the universities?
 - □ The Lab must not be viewed as a servant for university faculty
 - Mutual respect on the scientific level is essential
 (N.b.: The Lab's concurrent obligation is to maintain high standards)
 - □ The universities must be seen to put up their share of "risk" capital
 - Jointly-funded (Univ./ANL) joint appointment help enormously
- What were the common concerns?
 - Success is an iterative process
 - The initial steps must be modest in order to lower barriers for success
 - Each iteration is more ambitious, and involves a new learning process
 - ... but the ultimate ambition must be large, and shared

